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KINETICS OF THE SELF-SIMILAR CONDITIONS OF DIFFUSIONAL
COMBUSTION OF POLYDISPERSE LIQUID FUEL

Yu. M. Goldobin UDC 621.1.016:536.46

On the basis of the kinetic equation for the particle distribution function with respect to the
radius, a method is proposed for calculating the processes of heat and mass transfer in the
combustion of liquid fuel of a polydisperse melf.

In the ignition of a liquid-drop or dustlike fuel in various devices, the determining role is played by the
kinetics of particle combustion in a medium of oxidant diluted with inert gas. The problems arising here are
very complex in view of their nonlinearity, and therefore they are solved, especially for the case of various
engineering devices, by means of experimental methods or numerical calculations using a computer. In the
latter case, the calculation of the combustion kinetics of a polydisperse particle system is undertaken by
dividing the initial particle size distribution into narrow fractions [1-3]. An alternative approach which has
been successfully used in calculations of vaporization and solution [4-6] is to use the kinetic equation for the
particle distribution with respect to the radius.

In the present work, on the basis of this approach [5, 6], the simplest model of quasidiffusional combustion
of polydisperse liquid-fuel drops in a volume with adiabatic walls is considered.

As in [6], it is assumed that the fuel drops are spherical in form; that their mass concentration is small;
that the product consumption corresponds to stoichiometry of the reaction; and that there is no breakdown or
coagulation of the drops; that the fuel is injected into gas confaining oxidant with a temperature of the medi-
um Tye ., above the ignition temperature. The assumptions adopted also hold in real conditions.

Polydispersity of the drops in the combustion process will be taken into account by the kinetic equation
for the particle distribution function with respect to the radius f(rg, t) [5, 6]

Of(rs, 1) O AW (s, £)] =0, 1
- ”T“ars [Flrs, Wz, ©)

for which the following relation will hold
AN = Nof (i, D) drgi flgs 0)=Fols)s [ Folrg) drg = 1. (2)
0

In {6], the distribution function f(rg, t) for self-similar quasisteady conditions of evaporation was obtained
in general form. Analogous determination of f(rs, t) is possible in combustion if the combustion rate of a single
fuel drop W(rs, t) is known.

The function W(rg, t) is obtained on the basis of the quasisteady diffusional combustion of a drop, under
the assumption that the simplest reaction between fuel vapor and oxidant occurs in the flame. At high temper-
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atures in the combustion region, the drop temperature is little different from the boiling point Tg; large varia-
tions in Tme influencing the evaporation rate have little influence on the drop temperatures and Ty (2, 3].
Therefore, it will be assumed below that the drop temperature is constant at Tg. In [7, 8], an expression was
obtained for the fuel flux, which, in the absence of convection and when the energy balance is faken into account
for the external region r > ry (r — ), may be written in the form

dM, 4k, € oy o AR g [1 Co—CGn (p _ } ’ (3)
" =1 { . In {1 + —_—L (T; s) }" P T B (T4 me)»
where =QRr — L — Cy(Tf— Tg).

In the absence of combustion (T¢ = Tyye). the situation corresponds to the case of drop evaporation in an
inert medium {7, 8].

From Eq. (3), W(rg, t) may be obtained in the form of the product of two functions [6]
Wi, t)=Qg) o), (4)
where

__~1__ o Ay ! O . Ay 1 ‘il Cz‘CinT__T J
0(5) = 3 0= {TQ m[w s Ts)]a————————m(%“qn) | T T }

The distribution function for the given model of combustion takes the form [6]

r2

flrg, t) = ZA;rgexp l—ai ;

exp [——ai j o () dt]. (5)

0

When t = 0, the initial particle distribution over the radius is

2

[ s 0)=fo(rg) = ZAyss exp {—' 4 LQS—i ’ (6)

To determine the self-similar parameters, following [6], the moment of order s is calculated

Ny ¢ N, /2 — =2 s+ 2 - ! 1
£y = 2 | 1&g, D drg = —2— ZA2"a; 2 T —a fdt ). (7)
(rgd NGO 5 réf{rg, 1) drg NG a ( 5 )exp ‘ a § () dt |

The proportion of unburnt fuel mass y(t) at time t may be defined as

/

oM 1 s SN 8)
y{)y= M, —%3—0 bgrsf(’sv ) drg }E)No .

Then it follows from Egs. (7) and (8) with s = 3 that

., L ¢
y(t)=24,2°"° a, iy (5/2) (r3;)t exp [—— a; S o () dt ] . (9)
‘ b

Beginning at some time t, (small drops have vaporized, fuel vapor has entered into reaction with oxidant,
ignition and partial combustion of the mixture in the kinetic region have occurred), there exists a distinctive
kind of regular conditions of diffusional combustion, in which f(rg, t) and hence all the other functions will be
determined only by the first term of the series

N, 9 —ﬁz S+2 !
(rg) =20 A2 ¢ 72 1“( ) exp {—a co(t)dt], (10)
S N(@) 9 | z.,S

and from the normalization condition (s = 0) it is found that

N() = _21— Nyexp [—a S o (9) dt}. 11)
o
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The self-similar parameters are found from Eqgs. (8), (10}, and (11)

(r3)= E:QS/?wS/?r(_L *2 2) : (12)

From Ed. (12) with s = 1, the following expression is obtained for «
()

I (3/2)

212 (3/2) — (13)
= ——=—" {RY=6 =
(gor 1T

It follows from Egs. (6) and (2) that ¢ ~ A. Then, the proportion of unburnt fuel mass is determined from
Edq. (9}, taking account of Eqs. (8), (11), and (13)

I3
y(t) = exp [f—a‘f () dt]. (14)

4

Dependences for y(t), Tye(t). and so on may be obtained from a consideration of the thermal and material
balances in the combustion of a liquid-fuel drop taking account of certain assumptions.

In Eq. (4) for w(t), the flame temperature T¢ in the general case depends on Tme. the oxidant concentration
in the gas, its diffusion coefficient and other parameters, and therefore the given problem is not solved in final
form, and requires the use of numerical calculation. However, it follows from diffusional theory that the tem~
perature difference between the flame and the medium (Tf — Type) for combustion in air diluted by inert gas
is up to 90% of the maximum possible (T, — Tyye) [2]. This means that the temperature Ty differs only slightly
from the theoretical T, and may be defined in terms of it [2, 3]. The temperature T¢ increases with increase
in temperature of the medium, and decreases as the oxygen is consumed [2, 7], and therefore, it will change
only slightly and may be regarded as known and constant; this is acceptable for engineering calculations of the
combustion process in the diffusional region.

The thermal balance of the systém is written in the form

d& dM

[(MjnCin -+ Moy cox) + Me,l s = T =B+ (e — ) (B — 01, (15)

where 8= & =(T¢ =~ Tme.g ~ (Tme ~ Tme.o) = T¢ ~ Tme-

Introducing the notation
My, Moy .
= ; c = il Coy
I My o= g x
Eq. (15) may be reduced to the form

[Iﬂxﬁ’—r (=] a0 =" B4 (e —g,) (8 — &) dy. (16)

Cin ’ Cin

Solution of Eq. (16) with the initial conditions t =0,y =1, ¢| {=, = &, gives

; e _pr_
y=1-— :;;‘r {[1+c2 5 ('80~1‘)*)]02“”in ~1}. (an

An equation for y{t) is obtained from Eq. (14), taking account of Eq. (17)

d e
Yy gy B=Cin ln[1+u—”3’-(1~y) y=0, (18)
dt Cpr Cin
where
B Py [1+ b (Tths)}; p —
P2l L P¢ (¢~ cin)
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Fig. 1. Graphs of y(p): 1) calculation from linearized Eq. (19);
2) from accurate Eq. (17); a) u = 0.01; b) 0.02; ¢) 0.03; d) 0.05;
e) 0.1; ¢ = [(c; — cin)/B16%, ~ ).

Fig. 2. Combustion kinetics of a polydisperse system of fuel
drops: the curve corresponds to numerical calculations [9]; 1)
calculations from Ed. (25); 2) experimental data [9, 10] for vari-
ous forms of fuel; 7 = t/tmax’ tmax is determined at y = 0.01.

Numerical methods must be used to solve Eq. (18); however, it may be reduced to quadratures if the nat-
ural logarithm is expanded in Taylor series, retaining only a linear approximation in . This is equivalent
to linearization of the second logarithm in the expression for the fime component of the combustion rate w(t)
in Eq. (4), which is an analog of transition to calculation of the combustion by the "reduced-film" method [2]
and allows the relations obtained to be used for combustion processes with convective heat transfer. A linear-
ized equation for y(#) may be obtained from Eq. (17), but only with loss of some of the information on the in-
fluence of the specific heat of the combustion products on the relation between y and ; therefore, it is more
expedient to obtain y () from the heat balance of the drop under the assumption that the specific heat of the
gas mixture does not depend on y and the heat consumed in heating the gas in the external layer bounding the
flame front is negligibly small.

Then

§y— O
— 11— , (19)
y pe

where g¢* = ugh/ cgs bg = MT(/ Mg, and the equation for y takes the form

L b+ m) y—mp =0, (20
where
m:bc‘z—_jCin p= a}‘hz ’J,g
¢in P:Cg

Calculations from Egs. (17) and (19) show (Fig. 1) that, over the whole range of fuel concentration, taking
account of complete burnup (for pg = 0.1), Ed. (20) may be used; the maximum error is no more than 5%.

With the initial condition y(0) =1, the solution of Eq. (20) takes the form
y= (k4 m)lkexp(k+ m)¢+m] L. (21)
It follows from Eqgs. (19) and (21}, in a linear approximation, that
The™ Tmeo 4 9% {1 — (k -+ m) [kexp (k + m) t < m]-1}. (22)

The temperature of the medium may be more accurately obtained from Egs. (17) and (21) but it is not
given here because of its complexity.

All the basic conclusions of combustion kinetics are also valid for a steady gas flux including burning
droplets and moving at velocity V(x). Writing the kinetic equation for the particle distribution function over
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the radius [6], solving it for self-similar combustion conditions, and drawing all the subsequent conclusions,
a differential equation is obtained for y(x)

_czg_+k—{—mj m

a ve U ve YT

0, (23)

with a solution in the form

~ —1
y=(k- m)[kexpj kV—f—,m dx—{—mJ . (24)
)

Thus, Egs. {(17)-(22) may be used to calculate combustion processes in a steady gas flux or for the case
of a moving cloud of droplets if, as is evident from a comparison of Eqs. (21) and (24), the following substitu-
tion is made [6]

- (Vd(i)

j
s/

0

The method proposed for calculating the combustion kinetics of a polydisperse system of liquid-fuel drops
is in good agreement with experimental data [9, 10] obtained for the ignition of atomized fuel in a recording
chamber (Fig. 2). Calculation for Ty = 100 um; Ay = 0.06 J/msec - K; A, = 0.08 J/msec + K; L =189 kJ/kg;

c; =2 kI/kg * K; ¢y =3 kJ/kg « K; T =1973°K; Tg =426°K; p = 0.12 kg /kg; pp = 824 kg /m3 for aircraft diesel
fuel yields good agreement with the theoretical data of [9] obtained by numerical integration (Fig. 2).

For the above parameters, y(t) is given by the simple expression

y = 16.58(15.97 exp 16.58¢ - 0.61)71, (25)
which, in turn, may be simplified.

Analogous calculations for calculating the combustion kinetics of a polydisperse fuel in a turbulized gas
may be obtained on the basis of "reduced-film" theory, assuming that the heat-transfer coefficient from the gas
to the drop surface is known in advance, i.e., it may be calculated, in the first approximation, from the well-
known formula of [2].

All the conclusions and equations obtained in this case will completely coincide with those in [6].

NOTATION

g, rg, radius of flame front and drop; f(rg, t), drop distribution function over the radius; W(xg, t), com~
bustion rate; N, Ny, current and total numbers of drops initially; Aj, aj, constants; Ay, Ay thermal conductivity
of the gas in the regions in front of and khind the flame front; ¢y, Cy, Cips Cpys Coxs Cg» Lsobaric specific heat
of the fuel vapor in regions in front of anc behind the flame front, of inert gas, the combustion products, oxygen,
and the gas mixture; Ty, Tt Tines Tme.o» temperature of the drop surface, the flame front, and the mean cur-
rent and initial medium outside the combustion region; L, latent heat of vaporization of the fuel; Qg, heat of
combustion; p -, density of the liquid fuel; I', gamma function; M, Mg, Moxs Mjpy, M, Mg, mass of the cur-
rent and initial drop, oxygen, inert gas, fuel vapor, and gas mixture; ¢, uy, initial fuel concentration in inert
gas and in the total mixture (kg fuel/kg dry gas). Indices: S, drop surface; f, flame front; in, inert gas; pr,
combustion products; g, gas mixture; me, medium; 0, initially.

LITERATURE CITED

1. T. V. Vilenskii and D. M. Khzmalyan, Dynamics of Atomized-Fuel Combustion [in Russian], Energiya,
Moscow (1978).

2.  G. F.Knorre et al., Theory of Furnace Processes [in Russian], Energiya, Moscow~— Leningrad (1966).

3. V. V. Pomerantsev et al., Principles of the Practical Theory of Combustion [in Russian], Energiya, Lenin-
grad (1973).

4, M. V. Buikov, "Evaporation of polydisperse mist," Kolloidn. Zh., 24, No. 4, 390-395 (1962).

5. Yu. A. Buevich, "Mass-transfer kinetics of a polydisperse particle system with the surrounding medium,"
Prikl. Mat. Tekh. Fiz., No. 1, 50-57 (1966).
6. G. P. Yasnikov, "Kinetics of self-similar conditions of the evaporation of a polydisperse system of drops,”

Inzh.-Fiz. Zh., 42, No. 2, 243-250 (1982).

1041



7. B. I Khaikin, "Heterogeneous combustion,™ in: Heat and Mass Transfer in Combustion Processes [in
Russian], OIKhF, Chernogolovka (1980), pp. 58-79. :
8. S. Kumagai, Combustion {in Russian], Khimiya, Moscow (1979).
9. R.S. Tyul'panov and O. P. Sobolev, "Combustion of a polydisperse liquid-fuel torch," Fiz. Goreniya
Vzryva, No. 1, 94-97 (1967).
10. R.S. Tyul'panov, "Burnup of atomized hydrocarbon fuel in blast furnaces," Fiz. Goreniya Vzryva, No. 1,
88-99 (1966).

DISTRIBUTION OF THE HEAT FLUX TO THE CALORIMETRIC
PROBE IN A MULTIARC PLASMA REACTOR

A. T. Neklesa, P. N. Tsybulev, UDC 533.9.002.5:661.632-492:536.244
A. V. Gershun, and V. D. Parkhomenko

The article presents the distribution of the heat flux to the calorimetric probe in a multiarc
plasma reactor.

The quality of treatment of materials in multiarc plasma reactors is decisively influenced by the speed
with which the plasma jets mix [1, 2]. & is known that the heat flux from the gas to the calorimetric probe is a
function of the temperature and of the speed of the gas. Therefore the nature of its distribution gives some in-
dication of the speed with which the plasma jets mix.

The present work represents an investigation of the distribution of the heat flux from the gas to the calori-
metric probe in a widely used plasma reactor [3, 4] in dependence on the flow rate of the plasma-forming gas
and the power supplied to the plasmatrons. '

The experimental device (Fig. 1) consists of the plasma reactor 1 with three plasmatrons 2 and linear
calorimetric probe (LCP) 3 mounted in the upper part of the plasma reactor. In the lateral wall of the reactor
along its generatrix at an angle of 0, 30, and 60° there are three rows of holes with dielectric inserts 4. The
plasmatrons are of the electric-arc type, with linear arrangement and self-adjusting arc length, and their chan-
nel diameter is 8 - 1073 m. The overall electric power used for the electric discharge varied between 40 and
60 kW. The overall flow rate of plasma-forming gas—air was varied within the limits 1.5 - 10™%to 4.5 - 1073
kg/sec. Raw material was not charged into the reactor. The arrangement of the LCP and the method of mea-
suring the heat flux were described in detail in [5, 61.

Figure 2 shows the distribution of the heat flux in the diametral section of the reactor 3 - 1072 and 7 -
10™%* m from the point of intersection of the longitudinal axes of the plasmatrons. The LCP entered the reactor
at the angle o =60° (Fig. 1). Analogous distributions of the heat flux were obtained with « equal to 0 and 30°.

An analysis of the obtained data showed that in the cross section of the reactor at a distance of 0.3 of the
bore from the imaginary point of intersection of the axes of the plagmatrons (point A) the distribution of the
heat fluxes is very nonuniform. With decreasing power supplied as well as with decreasing flow rate of plasma~
forming gas the gradient of the heat flux over the radius decreases. However, this also eptails a decrease of
the fraction of the longitudinal section of the reactor occupied by flux with high enthalpy. With increasing dis-
tance from the place of collision of the plasma jets the heat fluxes are further equalized in the cross sections of
the reactor.

It follows from the oscillograms that at a distance of 3 -+ 10~% m from point A there are one-dimensional
flows directed toward the periphery of the reactor. It may be assumed that these flows originate in conse-
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